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INTRODUCTION

Modeling of submerged cable dynamics has been of interest for at least the past 30 years.
References 1 through 11 represent a partial listof the many works on this subject covering continuum,
finite element, finite segment, and lumped parameter approaches. Reference 12 provides an
excellent survey of the work done prior to 1973.

In a series of recent papers," 13-5 a method was presented based on previously developed
general procedures for finite segment modeling of multibody systems.16 17 In that work cables were
modeled by a series of rigid cylinders connected end-to-end by ball-and-socket joints. In particular,
in references 14 and 15 the model was partially validated by comparing model predictions with
predictions of linear partial differential equation models 181 9 developed from continuum assumptions
and with experimental data recorded at the Civil Engineering Laboratory at Port Hueneme,
California. "  As a result of this work, computer programs were developed 2i 12 for the three-
dimensional simulation of submerged and partially submerged cable dynamics.

The computer program CABLE3D2 developed at the Naval Coastal Systems Center
(NAVCOASTSYSCEN) has been applied to many towed cable systems. However, its utility is
limited by extremely long execution times that make the program expensive to use. In 1987
NAVCOASTSYSCEN contracted with the University of Alabama to investigate speed
improvements to the CABLE3D code to make it a more viable modeling tool. The results of this
investigation are documented in their report.2

For many submerged towed cable systems, the viscous forces acting on the cable are large
compared to the weight forces. Using a lumped parameter model and an analytical approach similar
to that in reference 1, it is shown in reference 24 that for these systems (and possibly others where
viscous forces do not dominate) a lumped parameter model is sufficient to model the system
dynamics. Furthermore, it is shown that a substantial increase in execution speed can be achieved
(over the computer programs described in references 21 through 23) using this method. With this
motivation, the equations of motion are developed herein using an approach similar to that in
references I and 24. The lumped parameter model is described in the following paragraphs.

A towed cable system is assumed to be a multiple branched cable system with towed bodies.
The system is assumed to be pulled from a single tow point (Figure 1). The cable and its branches
form an open tree system having no closed kinematic chains. Each length of cable may have different
physical properties, and the towed bodies may be spheres or more general vehicles with a single
plane of symmetry. The motion of the system tow point is arbitrary.

The system is modeled using discrete elements. This allows straightforward formulation of
the equations of motion for systems with branches and allows physical parameters to be changed
from element to element. Moreover, the use of simple elements simplifies the solution process.

The cable is modeled by a series of rigid links connected by frictionless spherical joints. The
masses of the links are concentrated half at each of their ends, the connecting joints of the system.
All fluid drag, added mass, weight, and buoyancy forces are also concentrated at the connecting
joints. Hence, the cable links are two-force members, carrying forces only along their length. The
links are also assumed to be small enough so that the forces acting on them are approximately
uniform over their length.
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The spherical towed bodies are assumed to be concentrated masses coincident with the lumped
mass of the connecting cable link. The nonspherical towed vehicles are three-dimensional bodies
with mass and inertia. They are connected to their adjacent cable links by frictionless spherical
joints at some reference point in the vehicle. This reference point need not be located at the vehicle's
mass center.

*.- IRE OPEDIVERTER

DEPRESSOR

FIGURE 1. TOWED CABLE SYSTEM

The remainder of this report is divided into five parts. The first three parts give details on
the equations required to describe the system kinematics and dynamics. The fourth describes a set
of numerical examples that illustrate the capabilities of the analysis. Results and execution times
required by the analysis presented in this paper are compared with those required by the computer
program CABLE3D in the last of the examples. The final section contains a short discussion.

KINEMATICS

SYSTEM CONFIGURATION

The position of the system tow point is described by specifying the position and orientation
of the mean ship frame together with the motion of the tow point relative to the mean ship frame.
The ship frame indicates the forward (X.), starboard (Y.), and downward (Z) directions. It provides
a convenient reference frame for describing the configuration of the system, especially during
steady-state motions.

At time t = 0, the X. (forward), Y. (starboard), and Z. (downward) axes of the mean ship
frame are assumed to be coincident with the X,, Y, and Z axes of the inertial reference frame. As
time progresses the ship frame is assumed to move in a horizontal plane relative to the inertial frame.
Its position is given by the X, and Y coordinates of it, origin and its orientation is given by a single

2
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turning angle v1 measured as positive when the ship is in a starboard turn. The orientation of the
mean ship frame (M) can be related to the orientation of the inertial reference frame (R) through
the following transformation matrix:

S(R,M) = C(1)

The configuration of the rest of the towed cable system at any instant of time is described by
a sequence of orientation angles measured relative to the mean ship frame. The orientation of each
cable link is given by two angles and the orientation of each towed vehicle is given by three angles.
Since the mass and external forces acting on a towed sphere are lumped with the mass at the end
of its connecting cable link, no additional angles are needed for them. Hence, for a model with a
total of NC cable links and NT towed bodies, there are 2NC + 3NT total angles needed to define
the configuration of the system. This is also the number of degrees-of-freedom of the model.

The orientation of the cable links is described by a dextral 2-3 rotation sequence. First, align
the cable link along the -X, axis and affix a set of axes x, y, and z to the link parallel to the ship
frame axes X., Y., and Z., respectively. Then rotate the link downward about the y (Y.i) axis
through an angle 01, and then outward about the z axis (which is perpendicular to the link) through
an angle 02 (Figure 2). The X', Y', and Z' axes represent the directions of the x, y, and z axes,
respectively, after the first rotation. Note that since the masses of the links are to be lumped at the
connecting joints, the moment of inertia of the links are ignored, making a third orientation angle
superfluous.

Y..Y' (Out) X' Cable Unk

ZZ'z(in)

Cable Link Y '
y,

FIGURE 2. ORIENTATION ANGLES FOR CABLE LINKS

The orientation of the towed vehicles are given by a dextral 1-2-3 rotation sequence relative
to the mean ship frame. That is, the dextral rotations 0,02, and 03 occur about the vehicle-fixed
x, y, and z axes, respectively. The x, y, and z axes are assumed to represent the axial (roll), lateral
(pitch), and normal (yaw) directions of the towed vehicle.,5 As for the cable links, these axes axe
parallel to the ship frame axes when the values of the orientation angles are zero (Figure 3). For
this rotation sequence, the orientation of the vehicle-fixed frame (K) can be related to that of the
mean ship frame (M) through the following transformation matrix:

3
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C2 C3  -C2S3  S2 1
S(M, K) = S2C3+S3C1 -S 1 S2 S3 +C 3 C -Sic 1  (2)

L-c, s2C3+s3s, C, s2s 3 + C3s1 S1 C 2 c

It should be noted here that the orientation of the vehicle can be related to the inertial frame by
multiplying the transformation matrices of equations (1) and (2). That is,

S(R,K) = S(R,M) S(M,K) (3)

X" /x

YY*(Out) X

Z*,z~in)

LX y"

Y',Ylout i''01

Z F2

FIGURE 3. ORIENTATION ANGLES FOR TOWED VEHICLES

SYSTEM MOTION

Given the motion of the mean ship frame, the motion of the system tow point relative to this
frame, the orientation angles described above, and the time derivatives of the orientation angles,
then the motion of the system model may be determined. The following paragraphs outline this
process.

Consider a typical cable link LK with ends J and K. Here J is assumed to be located at the
upper end of the link, closer to the system tow point. The position vector P" of end K relative to
an inertial reference frame may be written in terms of V the position vector of end J as follows:

P -F + pK (4)

where

L K Kn (5)

= - MCC in  - SK 2 M2 - SKC M3  (6)

4
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where the SK and C1 represent the sin (0) and the cos (0), respectively, and the n (i = 1, 2, 3)
represent unit vectors fixed in the mean ship frame. Note here that using equation (4) and P0 the
position vector of the system tow point, the position vectors of the end points of all the cable links
can be determined.

Equation (4) may now be differentiated to give the velocities and accelerations of the ends
of the links as follows:

= V + (7)

A' = A + pK (8)

where

pK = p 61 + Pv K(9)

p = pK + pK +pOK + aj (10)

and where piK and pK represent the partial derivatives of pK with respect to Of (i 1, 2) and i,
respectively, and the dots represent time differentiation. Explicit forms for AK and V" may be found
by performing the necessary differentiations of p as given by equations (5) and (6). In the numerical
procedure presented in the sequel explicit forms are required only for pK. Regarding notation,
repeated subscripts (such as i in the above equations) represent a sum over the range of that index.
This notation will be used consistently throughout the remainder of this paper.

The above equations provide components of the positions, velocities, and accelerations of
the lumped masses as a function of the ship motion, the cable link angles, and the link angle
derivatives. Later in this analysis, it will be necessary to calculate the second derivatives of the
link angles from the acceleration components. To this end, noting that p pis zero, it was shown
in reference 24 that:

[A -' -p~r-iji] .pf (11)
gK [A - f * _pgA.p p

pgK piK(

for i = 1, 2. Hence, given the lumped mass accelerations components, the link angles, and the link
angle derivatives, the second derivatives of the link angles can be calculated. Note here again that
there is a sum in equation (11) over the range of the repeated index j from 1 to 2.

Consider next a typical towed vehicle. Given the orientation angles and their time derivatives
(1-2-3 rotation sequence as presented earlier) for the towed vehicle, the angular velocity and angular
acceleration of the vehicle may be written as follows:'

w = oibj and * = 6ibi (12)

where the bi are unit vectors fixed in the vehicle and

5



NCSC TM 492-88

= c2 c 3 1 + + (S, S3 - C1 S2 C3) (13)

S= .-C2 36 + C3 06 + 1/(S, C3 +C, S2 S3 ) (14)

(3= S2O + OK + C1 ,jC, (15)

The velocity of the mass center of the vehicle can then be determined as follows:

VX = VI + wxpK (16)

where V' represents the velocity of J the lumped mass at the end of the adjacent cable link and pK

represents the position vector of the mass center of the vehicle relative to J.

Equations (13) through (15) may also be inverted to give26

0 = C3 [0- (S S3 - C S2 C)] / C2 - S3 [02- * (S C3 + C1 S2 S)] / C2  (17)

OK = S o-' (S - C1 S2 C3)] + C3 [( 2- j (S C3 + C1ss) (18)

63K = ( c C1 C2 - S2 C3 101 (S S3 - C1 S2  )/ C2

+ S2 S3 [-i (S C3 + C S2 S)]/ C2  (19)

These equations may now be differentiated to give explicit equations for calculating the second
derivatives of a vehicle's orientation angles given the components of its angular acceleration vector
(along the vehicle-fixed directions), the orientation angles and their first derivatives, and the angular
motion of the mean ship frame.

NONLINEAR EQUATIONS OF MOTION

EQUATIONS OF MOTION

The equations of motion of the system model can be found by applying Newton's law of
motion to each of the model's components. In general, these eouations may be written as follows:

M= or = A~ (20)

where the yK represents 4 (i = 1, 2, 3) the inertial acceleration components of the lumped masses

and 4 (i = 1, 2, 3) and 6wf (i = 1, 2, 3) the mass center acceleration components and angular
acceleration components of the towed vehicles in the vehicle-fixed frame. The range of the
subscripts i and j in equation (20) are thus from 1 to 3 for lumped masses and from 1 to 6 for towed
vehicles, and the definitions of MUK and ff depend, of course, on the particular model component.

Note here also that A in equation (20) represents the inverse of matrix M4K.

6
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For the general lumped mass shown in Figure 4 we have

+ M  + A + A + A H) S# - Akn! - Y2An n/njH(i,j=1,2,3)(21)

f = -t n i + + I + (Q+Q).i,(i= 1 ,2 , 3 ) (22)
H

where ii represent unit vectors fixed in an inertial reference frame and 8 represents the standard
Kronecker delta symbol.V The entries in the symmetric mass matrix M? include mL the mass of
the sphere, mK half the total mass of all the adjacent cable links, AL the added mass of the sphere,
A" and AH, (H = KI .... , K.) half the added masses of the adjacent cable links, and n; (J = K, K1,
.... K.) the inertial components of the unit vectors n' (which are parallel to the links). The values
of the added mass entries are taken to be:

AL= CM p VL (23)

A = -1 CM pV (24)
2

where CM is the added mass coefficient, p is the density of the fluid, and VL and V3 (J = K, K
.... K.) denote the volumes of the sphere and the adjacent cable links, respectively. Note that A
and A3 are defined as in references 5 and 13 except for the link added masses that are multiplied
by a factor of one-half for distribution to the lumped masses. The vector if includes e the internal
cable tensions, QL the resultant of the drag, buoyancy, and weight forces acting on the sphere, and
QK half the resultant of the drag, buoyancy, and weight forces acting on all adjacent cable links.
Note that these forces are also taken as presented in references 5 and 13, with drag forces assumed
constant over the cable links. As with the mass and added mass distributions, the forces on the
cable links are all distributed half at each end.

Consider next a lumped mass attached to a towed vehicle in Figure 5. In this case the entries
M f nd f become:

M = (o+A K)84 - A nf nj (i,j=1,2,3) (25)

if = -tKnK + S(R,L)U tL + (QK) .i (i = 1,2,3) (26)

where, as before, mK represents half the mass and AK represents half the added mass on the adjacent
cable link K, nf represents the inertial components of a unit vector parallel to the link K, ti represents
the force in link K, QK represents half the resultant of the fluid drag, buoyancy, and wei-ht forces
on link K, and tL represents the components of the force acting on the lumped mass due to the
adjacent towed body along vehicle-fixed directions. The matrix S(RL) is the transformation matrix
relating the orientation of towed vehicle L to the inertial reference frame.

7
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J2J

J2 

Link KnKI L Lik J?

K1  K

T (due to towed vehicle)
K,

FIGURE 4. GENERAL LUMPED MASS FIGURE 5. LUMPED MASS ATTACHED
TO A TOWED VEHICLE

Finally, consider a typical towed vehicle as shown in Figure 6. The force - 7 is the three
component force located at cable attachment point, The unit vectors bi are fixed in the body and
indicate the axial, lateral, and normal body directions as presented in reference 25. At any instant,
the velocity of the mass center K relative to the surrounding fluid and the angular velocity of the
body may be written as follows:

VK1' = u b, and wK = b, (27)

K TK

Ib3
FIGURE 6. TOWED VEHICLE AND ATTACH POINT

The fluid drag force acting on the vehicle is assumed to be given as a function of the ui1, the

o , and a set of hydrodynamic coefficients similar to those in reference 25. The added mass force
and moment acting on the vehicle are assumed to be given as follows:

1, = XK v'bj (i=1,2,3; j=l,...,6) (28)

8
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= Nurb, (i=1,2,3; j=l,...,6) (29)

where

viK = uf (i=1,2,3) (30)

vf = COK_, (i=4,5,6) (31)

and the X4K and N are a specified set of coefficients again similar to those in reference 25.

Using this notation, Mj andfK of equation (20) for a towed vehicle may be written as follows:

j= mK8 0 - X, (i,j=1,2,3) (32)

Mij =  -X4 (i=1,2,3; j=4,5,6) (33)

= -N,-,i (i=4,5,6; j=1,2,3) (34)

MiK = [= 6

M -3.J-3 -N3 (i,j=4,5,6) (35)

fK = (QK-TK).b,- (wxVK).(Xu bj) (i,j=1,2,3) (36)

f = (MK+M WKxIK.wK) bi_3  -(wK xx V). (N _
3Jbi)

(=1,2,3; i=4,5,6) (37)

where IK is the inertia tensor of the vehicle about a set of axes through the mass center of the body
and parallel to the unit vectors bi, VK is the velocity of the mass center of the vehicle, QK is the
resultant of the fluid drag, buoyancy, and weight forces acting on the vehicle, Mr and M are the
moments of -TK and QK about the mass center of the vehicle, respectively.

INTERNAL CABLE FORCES

In order to calculate the internal cable forces at any time, a set of additional equations must
be introduced to impose the condition of rigidity on the cable links and towed vehicles. These
equations of constraint relate the Cartesian coordinates, velocities, and accelerations of adjacent
lumped masses and adjacent lumped masses and vehicle mass centers. In particular, for a cable
link (two adjacent lumped masses) we have

p . pK = (L )2  (38)

Differentiating this equation twice with respect to time gives

9
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_= (39)

Here J and K refer to the lumped masses at the ends of link K as shown in Figure 4. For a towed

vehicle (adjacent lumped mass and towed vehicle mass center) the equation of constraint is

A'"' = A'_A"= *K x PK+WKXt (40)

In vehicle-fixed component form this equation becomes

S(R,K)J1 9j - 4K + P , =-[w" x(w'rxpX)] bi (4i)

where Y! (i = 1, 2, 3) represent the inertial components of the acceleration of lumped mass J, 4f
(i = 1, 2, 3) and 6!K (i = 1, 2, 3) represent the components of the acceleration of the mass center and
the angular acceleration of the vehicle about the vehicle-fixed axes, and PK (im = 1, 2, 3) are
defined as follows:

. = e,, Pk (42)

where ek is the permutation symbol,2 and pK represents the vehicle-fixed components of pK the
vector from the cable attachment point to the mass center of the body as shown in Figure 6.

Substituting from equations (20), (22), (26), (36), and (37) into equations (39) and (41) results
in a set of equations that are linear in the internal cable forces and force components (in the case
of a towed vehicle).

In the following paragraphs the results for general lumped masses, lumped masses attached
to towed vehicles, and towed -'ehicles are presented. Note that the results are given for the cases
with and without added mass effects. Note that the effect of added mass complicates the equations
considerably, especially for the cable links. (See the Numerical Solution section below for further
comments.)

For the general lumped mass shown in Figure 4 we have

[M'K nfnG] tG _ [(4K~ ~)f tK

+I[K nf njIr ] t -,(I"I) 2  + n[9A ( +Q)-9,(Qj+Q ) (43)

where there is a sum over the repeated indices i and j from 1 to 3, the sum over G ranges from J,
to J,, the sum over H ranges from K, to K,,, and Qr (M = , J, K, and L) represents the inertial
components of QM the external force vectors. All other symbols are as previously defined. If the
added mass effect is neglected this equation reduces to

10
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[,,,ht' - n ,,It' - [j +j]t1
G

+H[P nK tH = -LK (eK)2 + nK[P(QI:- ) - I.IQL+QK)] (44)

where ? represents the inverted sum of the masses associated with lumped mass K.

In the case of a lumped mass attached to the towed vehicle, the resulting equation is

[n Kn! Wj n [ K n -t [( +M kJnnK] tK

+[~A n[ S(R,L)kI = -L( )2 + # -i ] (45)

When the added mass effect is neglected, this equation reduces to

,:, t- n [d ,,,,[]W -tG + W]tK
G

+ [. nK S(R,L),] tk = -LK (AK ) + nK [V (Q[+ Q) _ Q (46)

Finally, for the case of a towed vehicle we have
-S(R,K)ji W n? + DK. = dK.bi S

lMfJ] {Qj - eK. (Xj. b)}

+[ijX+3-P 3 + 3IsM .- 9K 'bi - eK (Ni,b,,,)) (i = 1, 2,3) (47)

where
Dm = S(R,K)j 1M.S(R,K),, + k!I + ..f-i P+3 -aM.&k+ 3,n

pK

k+3.j+3p (i,n =1,2,3) (48)

d = -[wIx( w KxpV)] (49)

gK = wIxIK wK (50)

e - wKx VK (51)

11
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where Qj' and Mi are the components of the vectors QK and M along the vehicle-fixed directions,

and Q' are the inertial components of vector QJ. When the added mass effect is neglected, the
above equation reduces to

[ILS (R, K),,in.'I tj V + eIt - [Pikk , I 1. .

=d. + (KQK-..jQJ) + Pif #gf-M ) (i=1,2,3) (52)

where QK, Q!, M , and gf are the components of vectors QK, Q, M, and g about the vehicle-fixed

directions, and fk are the vehicle-fixed components of the inverse of the vehicle's inertia matrix.

NUMERICAL SOLUTION

Given the model's physical data, the motion of the mean ship frame, the motion of the system
tow point relative to the mean ship frame, the initial orientation angles of the system and their first
derivatives at some initial time to, the following procedure is used to determine the motion of the
cable system model at a sequence of later times. First, determine the components of position and
velocity vectors of the lumped masses, the position and velocity vectors of the mass centers, and
the angular velocity vectors of the towed vehicles. Then determine the external forces acting on
the system. Then, using these results and equations (43) through (52), formulate and solve a set of
linear equations for the internal cable forces. Then use equation (20) along with the cable forces
to calculate the accelerations of the lumped masses and the accelerations of the mass centers and
the angular accelerations of the towed vehicles. Finally, use equations (11) and (17) through (19)
((17) through (19) must be differentiated with respect to time) to determine the second time
derivatives of the orientation angles. These values can be used in a numerical integration scheme
to find the orientation angles and their first time derivatives at the next time step. The procedure
may be repeated to determine the motion of the system at later times.

When the added mass effect is included, the equations of motion become more complex.

Including the effect for cable links produces 3x3 mass matrices Mf. that are time dependent and,
hence, must be calculated and inverted at each time step. This is a heavy numerical burden. This
time-dependency results from assuming that the added mass effects are present only when the cable
is accelerating (relative to the fluid) normal to its length. The problems are not as severe for towed
vehicles or spheres. In these cases, the mass matrices are not time dependent.

LINEAR EQUATIONS OF MOTION

In general, the nonlinear equations of motion for the towed cable system model may be
expressed in the form:

S' = f 1(Yj) = Y.+i (i=l,...,n; j=l,...,2n) (53)

i = f,(y,,uk) (i=n+l,...,2n; j=l,...,2n; k=l,...,m) (54)

12
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where y (i = 1,... , n) represent the orientation angles relative to the mean ship frame of the cable
links and towed vehicles of the system. y, (i = n + 1 ... , 2n) represent the first derivatives of
these angles, and u, (k = 1, .... , m) represent a set of external inputs, such as tow point motion and
control surface motions on the towed vehicles. During steady forward or steady turning motion
and in the absence of external disturbances, the system can exhibit steady-state equilibrium positions.
In these situations, the orientation angles relative to the mean ship frame remain constant. These
angles may be found by solving the n nonlinear algebraic equations

fR+,(yj,,y+j,,.=O) = 0 (i,j=l,...,n) (55)

where yj, and y, +j,, (j = 1, ... n) represent the equilibrium values of the orientation angles of the
system and their time derivatives, respectively.

To describe motions of the system that result from small disturbances to the state vector y or
to the external input vector u, the nonlinear equations of motion ((53) and (54)) can be linearized
about the equilibrium configuration. To this end, introduce a perturbation vector z to the equilibrium
state vector y, and a perturbation vector v to the equilibrium external input vector u. so that

y = y, + z (i'-1,...,2n) (56)

Uk = UA + Vk (k=l,...,m) (57)

Substituting these values into the nonlinear equations of motion, expanding in a Taylor Series about
the equilibrium configuration, and omitting terms of second for higher order in the perturbations z
and vk results in the equations

ii= Az, + Bavk (58)

where

= (afa/ y) (59)

B = (afj / auk). (60)

Here the subscript e on the partial derivatives indicates that they are evaluated at the equilibrium
configuration. Since the first n equations (53) are simply definitions of the state vector y, the first
n rows of the A and B matrices take on the special values

A = 0 (ij=l,...,n) (61)

Ai.,=+ 8# (i,j=l,...,n) (62)

Ba  = 0 (i=l,...,n; k=l,...,m) (63)
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where, as before, 8,j represents the standard Kronecker delta symbol.

The nontrivial entries in the matrices may be approximated using finite differences. In this
work a second-order central difference is used so that the entries are calculated as follows:

f (y. + dyj , u,) - f (y,-dyj,u ) (64)

2dy(

f (y,,u,+duk) - f (y,,u-du ) (65)
Bik = 2 duk (65)

where dy, and duk represent small increments in y,, and uk; dyj represents the 2n-vector of increments

(0 ... , dyj, 0 ... , 0) and dul represents the m-vector of increments (0 .... , 0, duk, 0, ... , 0).
The nonzero increments dy and duk occur in the jb and ke ' entries of dyj and dUk, respectively. Note
that since the steady-state motion is stationary, the matrices A and B are constant matrices.

Equation (58) represents a set of first-order linear system of equations in the perturbations z
and v. They are useful for studying towed system stability, sensitivity to change of input state v,
and control analysis. 2

NUMERICAL SIMULATIONS

The procedures outlined in the previous sections of this report have been incorporated into a
computer program NCSC -DYNTOCABS (Naval Coastal Systems Center -DYNamics of TOwed
CABle Systems). The following paragraphs outline a set of examples that serve to illustrate the
capabilities of the program. Examples of nonlinear, linear, and steady-state analyses are presented.
The final example compares the results and execution times of DYNTOCABS with the program
CABLE3D. 23

The first example illustrates a steady-state analysis. Figure 7 shows the side views of two
identical cables undergoing a steady 5-knot (8.345-ft/sec) forward tow. The cables are 100 feet in
length, 1 inch in diameter, and weigh 1 lb/ft. At the end of each cable is a 10-inch diameter sphere
weighing 50 pounds. The cables are depicted by the solid line when submerged and by a dashed
line when in air. As is evident from the plot, one of the cases represents a fully submerged cable
system while the other represents a system towed from 35 feet above the surface. The fully
submerged cable remains concave downward over its entire length due to the fluid drag, while the
partially submerged system is concave upward in air and concave downward when submerged.
Also, since the partially submerged system has less overall fluid drag, its sphere reaches a greater
depth relative to the towing vessel.

The second example illustrates a steady-state analysis for a branched system. Figure 8 shows
the top and side views of the system undergoing a steady forward tow (solid line) and a steady turn
(dashed line). In each case, the ship's forward speed is 1.48 knots (2.5 ft/sec). A steady turn rate
of 0.5 radians/sec (28.65 deg/sec) was added to produce a 10-foot diameter steady turn. The cable
is approximately 3 feet long from the tow point to the branch point and approximately 3 feet long
from that point to the end of the upper branch (in the side view). The lower branch is about 1.8 feet
long. The cable has a uniform diameter of 0.163 inches and weighs 0.008979 lb/ft. The upper and
lower branches are terminated by a 2-inch diameter sphere weighing 0.246 pounds and

14
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0.492 pounds, respectively. Figure 8 shows that the steady-state configuration of the cable system
during the steady turn remains inside the 10-foot diameter circle prescribed by the ship motion and
is deeper than the steady-state configuration of the corresponding forward tow.

SIDE VIEW
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1u 40
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FIGURE 7. SUBMERGED AND PARTIALLY SUBMERGED CABLES
DURING A FORWARD TOW
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FIGURE 8. BRANCHED CABLE UNDERGOING FORWARD AND CIRCULAR TOW

The next example illustrates the nonlinear time-domain analysis. Figure 9 shows the top and
side views of a cable 6 feet in length moving from a steady forward tow of 1.48 knots (2.5 ft/sec)
to a steady turn of diameter 10 feet. The cable is 0.163 inches in diameter, weighs 0.008979 lb/ft,
and is terminated by a sphere having a diameter of 2 inches and weight of 0.246 pounds. The solid
lines represent the respective steady-state configurations and the dashed lines indicate the
intermediate positions at -second intervals as predicted by the nonlinear time-domain analysis.
As time progresses the cable moves inside the circle prescribed by the ship motion and deeper.

The fourth example illustrates the linear and nonlinear time-domain analysis. In this case the
cable system of Figure 9 is towed forward at a steady rate of 1.48 knots (2.5 ft/sec). The motion
of the tow point is then perturbed by a vertical oscillation. Figure 10 shows the ratio of the vertical
displacement of the sphere (relative to its steady-state position) to the excitation amplitude (positive
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indicating downward displacements of the sphere) as a function of time for three cases. The dotted
line indicates the predictions based on the linearized equations and the solid line indicates the
predictions of the full nonlinear equations. The first case has an excitation amplitude of 0.1 feet
and frequency of 0.25 cycles per second. Allowing initial transient motions to subside, the sphere
begins to oscillate vertically at the forcing frequency and 20 percent of the excitation amplitude.
Excellent agreement is found here between the linear and nonlinear equations of motion. In the
second case, the excitation amplitude is left unchanged while the frequency is increased to 1 cycle
per second. In this case, the predictions based on the linearized equations differ from those based
on the nonlinear equations by approximately 10 percent. The sphere no longer oscillates about its
original equilibrium position, but oscillates about a point slightly above (negative amplitude ratio)
the original position. The linear equations predict oscillations of the same magnitude, but about
the wrongposition. In the last case, the excitation amplitude is increased to 0.5 feet and the frequency
is left unchanged at 1 cycle per second. In this case both the range of the oscillation of the sphere
and the location about which it oscillates are inaccurately predicted by the linear equations. For
example, the position about which the sphere oscillates is in error by 90 percent.
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FIGURE 9. CABLE MOTION FROM FORWARD TO CIRCULAR TOW

It should be noted here that much greater nonlinear effects can be induced than those in the
previous example. The example simply illustrates how nonlinearities can manifest themselves in
towed system response.

The final example compares the results and execution times of DYNTOCABS and
CABLE3D2 and illustrates how both are affected by changes in the number of links used in the
model. The modeled segment of cable is 100 feet in length, weighs 0.75 pounds per foot in water,
and is assumed to be circular in cross section. It is held fixed at one end and has a 17-pound sphere
attached to its free end. The cable is stretched out horizontally and released from rest from that
position. Figure 11 shows predictions of the cable shape every 3 seconds from 3 to 30 seconds as
calculated by DYNTOCABS and CABLE3D.2 The results for CABLE3D are shown by dashed
lines. Figures 11 (a), (b), and (c) show the results of models having 5, 10, and 15 links. The 5- and
10-link models were generated by breaking the cable into equal length segments, and the 15-link
model was generated by halving the lengths of the first two and the last three links of the 10-link
model.
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It is evident from a comparison of Figures 11 (a) through (c) that 5 links is insufficient to
model the curvature of the cable as it drops. Although much smoother than the 5-link model, the
10-link model still has difficulty near the fixed and free ends. Moreover, it should be noted that
the predictions of the 5- and 10-link models lagged behind those of the 15-link model which appears
to adequately describe the system dynamics. In fact, further refined 20- and 30-link models predicted
nearly identical results. Finally, although some differences are apparent, the results of
DYNTOCABS and CABLE3D agree closely.

Figure 12 shows the execution time in seconds incurred on a VAX 8650 for each of the runs
described above (as well as a 20-link model) as a function of the number of links in the model. It
is clear that the execution time required by DYNTOCABS is well below that required by CABLE3D,
especially as the number of links in the model is increased. DYNTOCABS required one-fifth the
execution time that CABLE3D (3D option) required for the 5-link model, and it required one-twenty
sixth of the execution time that CABLE3D (3D option) required for the 20-link model.

DISCUSSION

A set of algorithms are presented that have been implemented into a computer code called
NCSC - DYNTOCABS. The towed systems may be submerged or partially submerged. They may
have one or many open branches, but must be towed from a single point. The physical properties
of the cable may change from one segment of the cable to the next. The cable may be attached to
a set of towed spheres or more general towed vehicles with control surfaces. The spheres may be
located anywhere along the cable, but the towed vehicles must be at the ends of the branches.
Finally, the program may be used to perform a linear or nonlinear time-domain or a steady-state
analysis. The linear time-domain analysis computes small perturbations to a steady-state config-
uration due to perturbations in the configuration or perturbations in external inputs, such as the tow
point motion and the control surfaces on the towed vehicles. Additional routines may be added to
aid in the design of actively controlled towed systems.

The cable is modeled by a series of rigid links connected end-to-end by spherical joints. The
masses of these links and the forces that act upon them are lumped at the joints of the system. The
effects of fluid drag, buoyancy, weight, and added mass are included. The nonlinear equations of
motion of the system are numerically generated using procedures presented herein which are similar
to those presented in references 1 and 24. Although exhaustive checks have not been made, the
results produced to date using this approach are nearly identical to those found using the approach
presented in references 6 and 15. Finally, for the reasons noted in reference 24, substantial increases
in execution speed are obtained.

Due to its generality, flexibility, and reasonable execution speed, NCSC - DYNTOCABS is
expected to be very useful in the design of large multibranched towed cable systems.
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